Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731523

RESUMO

This study reports an innovative approach for producing nanoplastics (NP) from various types of domestic waste plastics without the use of chemicals. The plastic materials used included water bottles, styrofoam plates, milk bottles, centrifuge tubes, to-go food boxes, and plastic bags, comprising polyethylene terephthalate (PET), polystyrene (PS), polypropylene (PP), high-density polyethylene (HDPE), and Poly (Ethylene-co-Methacrylic Acid) (PEMA). The chemical composition of these plastics was confirmed using Raman and FTIR spectroscopy, and they were found to have irregular shapes. The resulting NP particles ranged from 50 to 400 nm in size and demonstrated relative stability when suspended in water. To assess their impact, the study investigated the effects of these NP particulates on cell viability and the expression of genes involved in inflammation and oxidative stress using a macrophage cell line. The findings revealed that all types of NP reduced cell viability in a concentration-dependent manner. Notably, PS, HDPE, and PP induced significant reductions in cell viability at lower concentrations, compared to PEMA and PET. Moreover, exposure to NP led to differential alterations in the expression of inflammatory genes in the macrophage cell line. Overall, this study presents a viable method for producing NP from waste materials that closely resemble real-world NP. Furthermore, the toxicity studies demonstrated distinct cellular responses based on the composition of the NP, shedding light on the potential environmental and health impacts of these particles.


Assuntos
Sobrevivência Celular , Macrófagos , Microplásticos , Sobrevivência Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Nanopartículas/química , Plásticos/química , Células RAW 264.7 , Expressão Gênica/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Resíduos/análise , Tamanho da Partícula
2.
Membranes (Basel) ; 14(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38392676

RESUMO

Isoamyl alcohol is an important biomass fermentation product that can be used as a gasoline surrogate, jet fuel precursor, and platform molecule for the synthesis of fine chemicals and pharmaceuticals. This study reports on the use of graphene oxide immobilized membra (GOIMs) for the recovery of isoamyl alcohol from an aqueous matrix. The separation was performed using air-sparged membrane distillation (ASMD). In contrast to a conventional PTFE membrane, which exhibited minimal separation, preferential adsorption on graphene oxide within GOIMs resulted in highly selective isoamyl alcohol separation. The separation factor reached 6.7, along with a flux as high as 1.12 kg/m2 h. Notably, the overall mass transfer coefficients indicated improvements with a GOIM. Optimization via response surfaces showed curvature effects for the separation factor due to the interaction effects. An empirical model was generated based on regression equations to predict the flux and separation factor. This study demonstrates the potential of GOIMs and ASMD for the efficient recovery of higher alcohols from aqueous solutions, highlighting the practical applications of these techniques for the production of biofuels and bioproducts.

3.
Nanomaterials (Basel) ; 13(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38133035

RESUMO

This study reports the development of a novel amphiphobic coating. The coating is a bilayer arrangement, where carbon nanotubes (CNTs) form the underlayer and fluorinated alkyl-silane (FAS) forms the overlayer, resulting in the development of highly amphiphobic coatings suitable for a wide range of substrates. The effectiveness of these coatings is demonstrated through enhanced contact angles for water and artificial blood plasma fluid on glass, stainless steel, and porous PTFE. The coatings were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and contact angle (CA) measurements. The water contact angles achieved with the bilayer coating were 106 ± 2°, 116 ± 2°, and 141 ± 2° for glass, stainless steel, and PTFE, respectively, confirming the hydrophobic nature of the coating. Additionally, the coating displayed high repellency for blood plasma, exhibiting contact angles of 102 ± 2°, 112 ± 2°, and 134 ± 2° on coated glass, stainless steel, and PTFE surfaces, respectively. The presence of the CNT underlayer improved plasma contact angles by 29%, 21.7%, and 16.5% for the respective surfaces. The presence of the CNT layer improved surface roughness significantly, and the average roughness of the bilayer coating on glass, stainless steel, and PTFE was measured to be 488 nm, 301 nm, and 274 nm, respectively. Mechanistically, the CNT underlayer contributed to the surface roughness, while the FAS layer provided high amphiphobicity. The maximum effect was observed on modified glass, followed by stainless steel and PTFE surfaces. These findings highlight the promising potential of this coating method across diverse applications, particularly in the biomedical industry, where it can help mitigate complications associated with device-fluid interactions.

4.
Nanomaterials (Basel) ; 13(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36903820

RESUMO

The low solubility and slow dissolution of hydrophobic drugs is a major challenge for the pharmaceutical industry. In this paper, we present the synthesis of surface-functionalized poly(lactic-co-glycolic acid) (PLGA) nanoparticles for incorporation into corticosteroid dexamethasone to improve its in vitro dissolution profile. The PLGA crystals were mixed with a strong acid mixture, and their microwave-assisted reaction led to a high degree of oxidation. The resulting nanostructured, functionalized PLGA (nfPLGA), was quite water-dispersible compared to the original PLGA, which was non-dispersible. SEM-EDS analysis showed 53% surface oxygen concentration in the nfPLGA compared to the original PLGA, which had only 25%. The nfPLGA was incorporated into dexamethasone (DXM) crystals via antisolvent precipitation. Based on SEM, RAMAN, XRD, TGA and DSC measurements, the nfPLGA-incorporated composites retained their original crystal structures and polymorphs. The solubility of DXM after nfPLGA incorporation (DXM-nfPLGA) increased from 6.21 mg/L to as high as 87.1 mg/L and formed a relatively stable suspension with a zeta potential of -44.3 mV. Octanol-water partitioning also showed a similar trend as the logP reduced from 1.96 for pure DXM to 0.24 for DXM-nfPLGA. In vitro dissolution testing showed 14.0 times higher aqueous dissolution of DXM-nfPLGA compared to pure DXM. The time for 50% (T50) and 80% (T80) of gastro medium dissolution decreased significantly for the nfPLGA composites; T50 reduced from 57.0 to 18.0 min and T80 reduced from unachievable to 35.0 min. Overall, the PLGA, which is an FDA-approved, bioabsorbable polymer, can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower required dosage.

5.
J Pharm Sci ; 112(8): 2260-2266, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36958690

RESUMO

Active pharmaceutical ingredients that have low aqueous solubility pose a challenge in the field of drug delivery. In this paper we report for the first time the synthesis of nano-structured, hydrophilized polylactic acid (nfPLA) and its application in the delivery of low solubility drugs. Microwave induced acid oxidation was used to generate nfPLA where the oxygen concentration increased from 27.0 percent to 41.0 percent. Also, the original non dispersible PLA was converted to a relatively dispersible form with an average particle size of 131.4 nm and a zeta potential of -23.3 mV. Small quantities of the nfPLA were incorporated into the crystals (0.5 to 2.0 % by weight) of a highly hydrophobic, low solubility antifungal drug Griseofulvin (GF) to form a composite (GF-nfPLA). An antisolvent approach was used for the synthesis of the drug composite. SEM and Raman imaging showed non-uniform distribution of the nfPLA on the crystal surface. The solubility of GF increased from 8.89 µg/mL to as high as 49.67 µg/mL for the GF-nfPLA. At the same time zeta potential changed from -15.4 mV to -39.0 mV, therefore the latter was a relatively stable colloid. Octanol-water partitioning also showed a similar effect as logP reduced from 2.16 for pure GF to 0.55 for GF-nfPLA. In vitro dissolution testing showed six times higher aqueous solubility of GF-nfPLA compared to pure GF. The time for 50 (T50) and 80 % (T80) dissolution reduced significantly for the nfPLA composites; T50 reduced from 40.0 to 14.0 min and T80 reduced form unachievable to 47.0 min. Overall, the PLA which is an FDA approved, bioabsorbable polymer can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower the required dosage for drugs.


Assuntos
Micro-Ondas , Nanopartículas , Solubilidade , Griseofulvina/química , Poliésteres , Água/química , Tamanho da Partícula , Nanopartículas/química
6.
Membranes (Basel) ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557134

RESUMO

The pervaporation process is an energy-conservative and environmentally sustainable way for dehydration studies. It efficiently separates close boiling point and azeotrope mixtures unlike the distillation process. The separation of ethanol and water is challenging as ethanol and water form an azeotrope at 95.6 wt.% of ethanol. In the last few decades, various polymers have been used as candidates in membrane preparation for pervaporation (PV) application, which are currently used in the preparation of mixed matrix membranes (MMMs) for ethanol recovery and ethanol dehydration but have not been able to achieve an enhanced performance both in terms of flux and selectivity. Composite membranes comprising of poly (vinyl alcohol) (PVA) incorporated with carboxylated carbon nanotubes (CNT-COOH), graphene oxide (GO) and GO-CNT-COOH mixtures were fabricated for the dehydration of ethanol by pervaporation (PV). The membranes were characterized with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Raman spectroscopy, Raman imaging, contact angle measurement, and water sorption to determine the effects of various nanocarbons on the intermolecular interactions, surface hydrophilicity, and degrees of swelling. The effects of feed water concentration and temperature on the dehydration performance were investigated. The incorporation of nanocarbons led to an increase in the permeation flux and separation factor. At a feed water concentration of 10 wt.%, a permeation flux of 0.87 kg/m2.h and a separation factor of 523 were achieved at 23 °C using a PVA-GO-CNT-COOH hybrid membrane.

7.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36233260

RESUMO

In this research, the synergistic antiviral effects of carbon nanotubes (CNTs) and metal oxides (MO) in the form of novel hybrid structures (MO-CNTs) are presented. Raw CNTs, Ni(OH)2, Fe2O3 and MnO2, as well as Ni(OH)2-CNT, Fe2O3-CNT and MnO2-CNT were explored in this study against Escherichia. coli MS2 bacteriophage, which was used as a virus surrogate. The nano particles were synthesized and characterized using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), particle size analysis, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Kinetic parameters such as the LD50 (lethal dose to kill 50% of the population), T50 and T80 (time taken to kill 50% and 80% of the population), SGR (specific growth rate) and IRD (initial rate of deactivation of the population) were also studied to examine the antiviral efficacy of these nanomaterials. Among all the nanomaterials, Ni(OH)2-CNT was the most effective antiviral agent followed by Fe2O3-CNT, MnO2-CNT, raw CNTs, Ni(OH)2, Fe2O3 and MnO2. When comparing the metal oxide-CNTs to the raw CNTs, the average enhancement was 20.2%. The average antiviral activity enhancement of the MO-CNTs were between 50 and 54% higher than the MO itself. When compared to the raw CNTs, the average enhancement over all the MO-CNTs was 20.2%. The kinetic studies showed that the LD50 of Ni(OH)2-CNT was the lowest (16µg/mL), which implies that it was the most toxic of all the compounds studied. The LD50 of Ni(OH)2, Fe2O3 and MnO2 were 17.3×, 14.5× and 10.8× times greater than their corresponding hybrids with the CNTs. The synergistic mechanism involved the entrapment of phage viruses by the nano structured CNTs leading to structural damage along with toxicity to phage from the release of MO ions. The metal oxide-CNT nano hybrids developed in this project are promising candidates in applications such as antiviral coatings, nanocomposites, adsorbents and as components of personal protection gears.


Assuntos
Nanotubos de Carbono , Antivirais/farmacologia , Cinética , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Nanotubos de Carbono/química , Óxidos/química , Óxidos/farmacologia
8.
Membranes (Basel) ; 12(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736328

RESUMO

Current approaches to dewatering aviation fuel such as kerosene are adsorption by activated charcoal, gravity separation, etc. The objective of this work is to develop and demonstrate the filtration and dewatering of kerosene using a carbon nanotube immobilised membrane (CNIM). Highly hydrophobic membranes were prepared by immobilising carbon nanotube (CNTs) over polytetrafluoroethylene (PTFE) and polyvinylidene difluoride (PVDF) microfiltration membrane for the dewatering of ppm level water from kerosene. The effects of different CNT concentrations on membrane morphology, hydrophobicity, porosity, and permeability were characterised. After immobilising CNT into membranes, the contact angle increased by 9%, 16%, and 43% compared to unmodified 0.1 µm PTFE, 0.22 µm PTFE and 0.22 µm PVDF membranes, respectively. The CNIM showed remarkable separation efficiency for the fuel-water system. The micro/nano water droplets coalesced on the CNT surface to form larger diameters of water droplets detached from the membrane surface, leading to enhanced water rejection. In general, the water rejection increased with the amount of CNT immobilised while the effective surface porosity over pore length and flux decreased. PTFE base membrane showed better performance compared to the PVDF substrate. The CNIMs were fabricated with 0.1 and 0.22 µm PTFE at an optimised CNT loading of 3 and 6 wt.%, and the water rejection was 99.97% and 97.27%, respectively, while the kerosene fluxes were 43.22 kg/m2·h and 55.44 kg/m2·h respectively.

9.
Molecules ; 27(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35566247

RESUMO

In this paper, we present the treatment of humic acid solution via carbon nanotube immobilized membrane (CNIM) distillation assisted by air sparging (AS). Carbon nanotubes offer excellent hydrophobicity to the modified membrane surface and actively transport water vapor molecules through the membrane to generate higher vapor flux and better rejection of humic acid. The introduction of air sparging in the membrane distillation (MD) system has changed the humic substance fouling by changing the colloidal behavior of the deposits. This modified MD system can sustain a higher run time of separation and has enhanced the evaporation efficiency by 20% more than the regular membrane distillation. The air sparging has reduced the deposition by 30% in weight and offered lesser fouling of membrane surface even after a longer operating cycle. The water vapor flux increased with temperature and decreased as the volumetric concentrating factor (VCF) increased. The mass transfer coefficient was found to be the highest for the air sparged-carbon nanotube immobilized membrane (AS-CNIM) integrated membrane distillation. While the highest change in mass transfer coefficient (MTC) was found for polytetrafluoroethylene (PTFE) membrane with air sparging at 70 °C.


Assuntos
Nanotubos de Carbono , Purificação da Água , Destilação , Substâncias Húmicas , Membranas Artificiais , Vapor
10.
Colloids Surf B Biointerfaces ; 216: 112512, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35533561

RESUMO

In this study, we have directly incorporated nanographene oxide (nGO) into a hydrophobic drug for enhanced dissolution performance through an antisolvent technique. Apixaban (APX) drug composites were synthesized with nGO incorporation ranging from 0.8% to 2.0% concentration. It was observed that the nGO was successfully embedded without any changes to the original drug crystal structure or physical properties. Dissolution of the drug composites was evaluated using US Pharmacopeia Paddle Method (USP 42). The time needed to reach a 50% release (T50) reduced from 106 min to 24 min with the integration of 1.96% nGO in APX and the T80 also dropped accordingly. Alternatively, dissolution rate showed promising performance with increase in nGO concentration. Initial dissolution rate increased dramatically from 74 µg/min to 540 µg/min. Further, work done in intestinal media revealed T50 went from not dissolving to 79.0 min. Decreased lipophilicity or logP value and increased aqueous solubility are both accredited to hydrophilic nGO water dispersion, producing a hydrophilic channel into the drug crystal surfaces through intermolecular interaction. Additionally, physical, and chemical characterizations confirm that hydrophobic apixaban was successfully transformed into a hydrophilic composite, showing potential for this technology to improve dissolution rate of a model hydrophobic compound.


Assuntos
Grafite , Pirazóis , Piridonas , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas , Óxidos , Pirazóis/química , Piridonas/química , Solubilidade , Água/química
11.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335407

RESUMO

Superhydrophobic surfaces, as indicated in the name, are highly hydrophobic and readily repel water. With contact angles greater than 150° and sliding angles less than 10°, water droplets flow easily and hardly wet these surfaces. Superhydrophobic materials and coatings have been drawing increasing attention in medical fields, especially on account of their promising applications in blood-contacting devices. Superhydrophobicity controls the interactions of cells with the surfaces and facilitates the flowing of blood or plasma without damaging blood cells. The antibiofouling effect of superhydrophobic surfaces resists adhesion of organic substances, including blood components and microorganisms. These attributes are critical to medical applications such as filter membranes, prosthetic heart valves, extracorporeal circuit tubing, and indwelling catheters. Researchers have developed various methods to fabricate blood-compatible or biocompatible superhydrophobic surfaces using different materials. In addition to being hydrophobic, these surfaces can also be antihemolytic, antithrombotic, antibacterial, and antibiofouling, making them ideal for clinical applications. In this review, the authors summarize recent developments of blood-compatible superhydrophobic surfaces, with a focus on methods and materials. The expectation of this review is that it will support the biomedical research field by providing current trends as well as future directions.

12.
Phys Chem Chem Phys ; 23(37): 21286-21294, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34543375

RESUMO

Recently, functionalized carbon nanotubes (fCNTs) were shown to increase the mechanical strength, thermal stability, and ionic conductivity in polyvinyl alcohol (PVA) based gel electrolytes (GE) for Zn ion batteries. However, questions remain about the origin of the property enhancement and the interactions between components of GEs. In this work, we employ density functional theory calculations to analyze the interactions between fCNT, PVA, and Zn ions. CNTs with increasing numbers of carboxyl (-COOH) functional groups and PVA chains with varying lengths were studied. We found that increasing the number of -COOH on the CNTs enhanced the adsorption energies (Eads) of PVA, and Eads also increased as the number of monomers increased. We then modelled the coordination of a Zn ion in fCNT-PVA complexes. Our results suggest that strong fCNT-PVA interactions contribute to the enhanced mechanical strength, while the enhanced ionic conductivity is partly owing to weak Zn adsorption.

13.
Molecules ; 26(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946364

RESUMO

Novel polyacrylamide gel electrolytes (PGEs) doped with nano carbons with enhanced electrochemical, thermal, and mechanical properties are presented. Carboxylated carbon nanotubes (fCNTs), graphene oxide sheets (GO), and the hybrid of fCNT/GO were embedded in the PGEs to serve as supercapacitor (SC) electrolytes. Thermal stability of the unmodified PGE increased with the addition of the nano carbons which led to lower capacitance degradation and longer cycling life of the SCs. The fCNT/GO-PGE showed the best thermal stability, which was 50% higher than original PGE. Viscoelastic properties of PGEs were also improved with the incorporation of GO and fCNT/GO. Oxygen-containing functional groups in GO and fCNT/GO hydrogen bonded with the polymer chains and improved the elasticity of PGEs. The fCNT-PGE demonstrated a slightly lower viscous strain uninform distribution of CNTs in the polymer matrix and the defects formed within. Furthermore, ion diffusion between GO layers was enhanced in fCNT/GO-PGE because fCNT decreased the aggregation of GO sheets and improved the ion channels, increasing the gel ionic conductivity from 41 to 132 mS cm-1. Finally, MnO2-based supercapacitors using PGE, fCNT-PGE, GO-PGE, and fCNT/GO-PGE electrolytes were fabricated with the electrode-specific capacitance measured to be 39.5, 65.5, 77.6, and 83.3 F·g-1, respectively. This research demonstrates the effectiveness of nano carbons as dopants in polymer gel electrolytes for property enhancements.

14.
Molecules ; 26(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807401

RESUMO

The aim of this work is to present an approach to enhance the dissolution of progestin medication, megestrol acetate (also known as MEGACE), for improving the dissolution rate and kinetic solubility by incorporating nano graphene oxide (nGO). An antisolvent precipitation process was investigated for nGO-drug composite preparation, where prepared composites showed crystalline properties that were similar to the pure drug but enhanced aqueous dispersibility and colloidal stability. To validate the efficient release profile of composite, in vitro dissolution testing was carried out using United States Pharmacopeia, USP-42 paddle method, with gastric pH (1.4) and intestinal pH (6.5) solutions to mimic in vivo conditions. Pure MA is practically insoluble (2 µg/mL at 37 °C). With the incorporation of nGO, it was possible to dissolve nearly 100% in the assay. With the incorporation of 1.0% of nGO, the time required to dissolve 50% and 80% of drug, namely T50 and T80, decreased from 138.0 min to 27.0 min, and the drug did not dissolve for 97.0 min in gastric media, respectively. Additionally, studies done in intestinal media have revealed T50 did not dissolve for 92.0 min. This work shows promise in incorporating functionalized nanoparticles into the crystal lattice of poorly soluble drugs to improve dissolution rate.


Assuntos
Excipientes/química , Grafite/química , Acetato de Megestrol , Nanopartículas/química , Disponibilidade Biológica , Química Farmacêutica , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Acetato de Megestrol/química , Acetato de Megestrol/farmacocinética , Solubilidade
15.
Membranes (Basel) ; 10(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142940

RESUMO

Membrane distillation (MD) is a promising desalination technology for the treatment of high salinity water. Here, we investigated the fouling characteristics of produced water obtained from hydraulic fracturing by implementing a carbon nanotube immobilized membrane (CNIM) via direct contact membrane distillation. The CNIM exhibited enhanced water vapor flux and antifouling characteristics compared to the pristine membrane. The normalized flux decline with the polytetrafluoroethylene (PTFE) membrane after 7 h of operation was found to be 18.2% more than the CNIM. The addition of 1-Hydroxy Ethylidene-1, 1-Diphosphonic acid (HEDP) antiscalant was found to be effective in reducing the membrane fouling. The salt deposition on the membrane surface was 77% less in the CNIM, which was further reduced with the addition of HEDP in the feed by up to 135.4% in comparison with the PTFE membrane. The presence of carbon nanotubes (CNTs) on the membrane surface also facilitated the regenerability of the membrane. The results indicated that the CNIM regained 90.9% of its initial water flux after washing, whereas the unmodified PTFE only regained 81.1% of its initial flux after five days of operation.

16.
Colloids Surf B Biointerfaces ; 196: 111308, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32784059

RESUMO

We report for the first time an antisolvent synthesis of nanostructured hydrophobic drug formulation onto a natural diatom. The jewel of the sea, a marine diatom, which is enriched in silicon, was cultured and grown in the laboratory. Its frustules were isolated and purified. The polar functional group on its surface provided unique physical and chemical properties. Griseofulvin (GF), an antifungal drug was used as a model compound was precipitated onto and adsorbed onto hydrophilic diatom surface, while stabilizer hydroxypropyl methyl cellulose (HPMC) was used for restricting particle growth during the composite synthesis. This work demonstrates that the fine drug crystals incorporated onto the diatom silica surface. The structural and morphological properties of the drug was characterized by various techniques. The drug loading of the formulation was estimated to be 41 % by weight. The incorporation of micro/nano crystals on the diatom surface dramatically enhanced the dissolution rate, and lowered the time required for 50 % dissolution for pure drug from 240-58 min for the drug composite, and the time required for 80 % dissolution or T80 was found to be 180 min for the composite while the pure drug reached a maximum of 65 % in 300 min.


Assuntos
Diatomáceas , Griseofulvina , Laboratórios , Tamanho da Partícula , Solubilidade
17.
Micromachines (Basel) ; 11(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245014

RESUMO

Under certain conditions, electrophoretic deposition (EPD) of single-wall carbon nanotubes (SWCNTs) onto metal at the base of nanoscale insulating windows can result in a single SWCNT per window, bonded at one end to the metal. During EPD charge, buildup on the insulator creates electrostatic lenses at the windows that control the trajectory of the SWCNTs. The aim is to develop a reproducible process for deposition of individual vertically oriented SWCNTs into each window to enable novel devices. The length of the SWCNTs is shown to be the most critical parameter in achieving results that could be used for devices. In particular, single nanotube deposition in windows by EPD was achieved with SWCNTs with lengths on the order of the window depth. By performing current vs voltage (IV) measurements against a platinum wire in a phosphate buffer and by modeling the data, the presence of the nanotube can be detected, the contact interface can be studied, and the nanotube's viability for device applications can be determined. These results provide a basis for process integration of vertical SWCNTs using EPD.

18.
Nanomaterials (Basel) ; 10(3)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235731

RESUMO

Methyl tert-butyl ether (MTBE) is a widely used gasoline additive that has high water solubility, and is difficult to separate from contaminated ground and surface waters. We present the development in functionalized carbon nanotube-immobilized membranes (CNIM-f) and graphene oxide-immobilized membranes (GOIM) for enhanced separation of MTBE via sweep gas membrane distillation (SGMD). Both types of modified membranes demonstrated high performance in MTBE removal from its aqueous mixture. Among the membranes studied, CNIM-f provided the best performance in terms of flux, removal efficiency, mass transfer coefficients and overall selectivity. The immobilization f-CNTs and GO altered the surface characteristics of the membrane and enhanced partition coefficients, and thus assisted MTBE transport across the membrane. The MTBE flux reached as high as 1.4 kg/m2 h with f-CNTs, which was 22% higher than that of the unmodified PTFE membrane. The maximum MTBE removal using CNIM-f reached 56% at 0.5 wt % of the MTBE in water, and at a temperature of 30 °C. With selectivity as high as 60, MTBE recovery from contaminated water is very viable using these nanocarbon-immobilized membranes.

19.
Colloids Surf B Biointerfaces ; 189: 110827, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32028132

RESUMO

This paper reports the development of a successful anti-solvent method that incorporates colloidal nano scale graphene oxide (nGO) directly into hydrophobic drug crystals. The nGO dispersed in solution acted as nucleating sites for crystallization and were embedded into the drug crystals without altering its structure or physical properties such as melting point. Several composites of drugs Sulfamethoxazole and Griseofulvin were synthesized with nGO concentration ranging between 0.2 and 1.0 %. The presence of nGO dramatically enhanced the dissolution rate. The time needed to reach a 50 % release (T50) reduced from 42-14 min with the integration of 0.8 % nGO in SMZ, while in GF the reduction was from 44-27 min with 0.5 % nGO. Increased release rates are attributed to the presence of the hydrophilic nGO which hydrogen bond more so with the aqueous mediums. Therefore, the incorporation of nGO into poorly soluble drugs is an effective approach towards drug delivery and bioavailability improvement and opens a new approach to high performance drug delivery.


Assuntos
Grafite/química , Griseofulvina/química , Nanopartículas/química , Sulfametoxazol/química , Cristalização , Griseofulvina/síntese química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Solubilidade , Sulfametoxazol/síntese química , Propriedades de Superfície , Água/química
20.
Sens Actuators B Chem ; 288: 611-617, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31772421

RESUMO

In the current work we report a simple and scalable technique for synthesis of ordered nanoporous Si-ZrO2 composite derived from the diatom Phaeodactylum tricornutum. The composite was well characterized using SEM, TEM-EDX, FTIR, TGA, BET and DLS. The diatom-ZrO2 was found to have a specific surface area of 140 m2/g, Si:Zr ratio of 1:4 and a particle size of 80 ± 2 nm. This composite was evaluated as an enzyme free electrochemical sensor towards the detection of methyl parathion (MP) and showed excellent sensing ability at extremely low detection limits of 54.3 pM and a linear concentration range of 3.4 nM to 64 µM. The diatom-ZrO2 composite was also found to be highly selective towards MP as shown by its response even in the presence of high concentrations of other interfering molecules and ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...